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Abstract. End-to-end neural networks have shown promising results on large 

vocabulary continuous speech recognition (LVCSR) systems. However, it is 

challenging to integrate domain knowledge into such systems. Specifically, ar-

ticulatory features (AFs) which are inspired by the human speech production 

mechanism can help in speech recognition. This paper presents two approaches 

to incorporate domain knowledge into end-to-end training: (a) fine-tuning net-

works which reuse hidden layer representations of AF extractors as input for ASR 

tasks; (b) progressive networks which combine articulatory knowledge by lateral 

connections from AF extractors. We evaluate the proposed approaches on the 

speech Wall Street Journal corpus and test on the eval92 standard evaluation da-

taset. Results show that both fine-tuning and progressive networks can integrate 

articulatory information into end-to-end learning and outperform previous sys-

tems.  

Keywords: Articulatory Features, Automatic Speech Recognition, Deep Neural 

Networks (DNN), End-to-end Learning. 

1 Introduction 

End-to-end learning has been successfully applied in many domains, such as handwrit-

ing recognition [1], neural machine translation [2], and so on. Furthermore, end-to-end 

models have become popular in automatic speech recognition (ASR) tasks. The con-

ventional ASR pipeline consists of many different components: the acoustic model, 

pronunciation model and language model. These components are separate and require 

lots of human expertise, e.g. a handcrafted pronunciation dictionary and designed 

senone states for Hidden Markov Models (HMMs). Additionally, the training targets 

and alignment information needed for neural networks in a DNN-HMM paradigm can 

only be obtained from another GMM-HMMs (GMM is short for Gaussian Mixture 

Model) model which is trained beforehand. Such a pipeline requires not only multiple 

training stages but also different optimization functions [4].  

To simplify this complex paradigm, end-to-end learning approaches [4-6, 11-13] 

have been proposed to replace hand-designed feature engineering and jointly learn all 
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components in a single architecture. These approaches can be transformed into compu-

tational flow graphs which can be optimized by backpropagation in a simple end-to-

end training process. End-to-end models are able to naturally handle sequences of arbi-

trary lengths and directly optimize the word error rate. However, it is challenging to 

integrate domain knowledge into these models. Therefore, the goal of this study is to 

combine articulatory features into end-to-end learning. 

Articulatory features (AFs), also known as phonological features, phonological at-

tributes or distinctive phonetic features, are used to represent the movement of different 

articulators, such as lips and tongue, during speech production. AFs can be robustly 

estimated from speech by statistical classifiers, such as GMM and neural networks [7]. 

A series of studies have demonstrated that AFs can improve the performance of ASR 

systems by systematically accounting for coarticulation, speaking styles and other var-

iability, especially in a noisy scenario [8]. Conventional methods to extract AFs from 

speech require precise boundary transcription. To get this boundary information, the 

usual practice is using forced alignments generated by a GMM-HMMs model [9], or 

labeling data manually at a frame-level [10], which are complex and time-consuming. 

Our hypothesis in this paper is that AFs can provide useful and complementary 

representations that cannot be learned automatically by an end-to-end architecture. This 

paper explores two approaches to integrate domain knowledge to improve end-to-end 

model performance. Our contribution is two-fold: In the first step, we train a bank of 

AF extractors using Connectionist Temporal Classification (CTC) in an end-to-end 

way, which does not require precise phone or frame-level boundary information; In the 

second step, we propose two approaches (fine-tuning networks and progressive net-

works) to integrate domain knowledge (articulatory features) into end-to-end learning 

in speech recognition tasks.  

2 Related work 

2.1 End-to-end learning in speech recognition 

At present, end-to-end learning in ASR can be mainly divided into two parts: CTC-

based approaches and encoder-decoder models. For the CTC, Graves et al. [5] intro-

duced the CTC loss function which removes the alignment constraint by introducing a 

“blank” label and allows to train a sequence labeling task directly without alignment 

and pre-segmentation. Miao et al. [4] explored a weighted finite-state transducers-de-

coding method to incorporate lexicons and language models in CTC objective function-

based models. Recently, Zweig et al. [6] presented an iterated CTC approach on the 

NIST 2000 conversational telephone speech evaluation set which significantly im-

proved performance over previous systems. For the encoder-decoder, Chorowski  et al. 

[11] introduced an attention mechanism into speech recognition, in which the authors 

combined both content and localization information to recognize a longer utterance. 

Bahdanau et al. [12] replaced HMMs with an attention-based recurrent sequence gen-

erator (ARSG) on the LVCSR task. Unlike CTC-based methods, the ARSG system can 

learn a language model implicitly. Chan et al. [13] presented a Listen, Attend and Spell 

system to transcribe speech to characters directly. They reported 10.3 % word error rate 
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(WER) with rescoring compared to the-state-of-the-art WER of 8.0% achieved by a 

convolutional neural network and long short-term memory DNN-HMMs model [20] 

on 2000 hours Google voice search dataset. 

2.2 Domain knowledge integration in speech recognition 

There are lots of approaches focusing on integrating domain knowledge to improve 

ASR performance, such as in feature engineering: mel-frequency cepstral coefficients 

[25] and vocal tract length normalization [26], and in algorithm optimization: sequence-

discriminative training [27]. Here, we only consider studies that involve linguistic and 

phonetic knowledge.  

Lee et al. [14] proposed automatic speech attribute transcription (ASAT) which is 

a new detected-based speech recognition paradigm. Compared to conventional ASR 

top-down paradigms, ASAT is bottom-up and coincident with the mechanism of hu-

mans perceiving and producing speech. To further improve phonological feature detec-

tion accuracy, Yu et al. [9] replaced one hidden layer multi-layer perceptrons by DNNs 

when building attribute detectors. Based on the high attribute detection precision, ex-

cellent phoneme estimate accuracy was obtained on the WSJ0 benchmark. Siniscalchi 

et al. [15] integrated acoustic-phonetic information into lattice rescoring. Inspired by 

shared phonetic knowledge among different languages, Siniscalchi et al. [16] designed 

a universal set of phones and used the set to improve the performance of cross-language 

phone recognition. Pitch accent was proposed by Ananthakrishnan et al. [17] to re-score 

the N-best results outputted from a standard ASR system.  At present, the works inte-

grating knowledge into ASR are mostly based on HMM hybrid architectures. Our ap-

proaches mainly focus on combining domain knowledge with neural end-to-end ASR 

systems.  

3 Model Architecture 

In this section, we present the details of AF extractors, fine-tuning networks and pro-

gressive networks. 

3.1 AF extractor 

Fig. 1 shows the flow diagram to get AF-level transcriptions. First, we split words into 

phonemes according to the CMU dict1. Then, we generate AFs transcriptions according 

to the mapping [9] (see Table 3 in the Appendix). The AF-level transcriptions will be 

used as training targets to build the AF extractors. 

Eight AF extractors were built: place, manner, anterior, back, continuant, round, 

tense and voiced. The AF extractor architecture is shown in Fig. 2 (a), which begins 

with two layers of 2D convolutions, followed by five layers of gated recurrent units 

(GRU), and the output layer is a fully connected layer. We train each extractor with the 

                                                           
1 http://www.speech.cs.cmu.edu/cgi-bin/cmudict 
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Fig. 1. Flowchart to convert word-level transcriptions of the phrase “of course” to AF labels. 

 

     

 

Fig. 2. Illustration of (a) AF extractor, (b) ASR baseline system, (c) and (d) fine-tuning networks 

and (e) progressive networks. The ASR baseline system is based on Deep Speech 2 [19]. Note: 

frozen (dotted line) without backpropagation and weight updating.   

CTC and additional two symbols (blank and space). For example, for ‘voiced’, the tar-

get labels are {voiced, other, space, blank}. 
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3.2 Fine-tuning Networks  

Fine-tuning is a process to transfer what a neural network learned on a given task to a 

second task. In this paper, AF extractors that have been learnt in a first task can be 

treated as a fixed front-end which transforms spectrograms to AFs. Hidden layer out-

puts from different AF extractors will be combined, then fed into another neural net-

work for the second task (ASR). Fig. 2 (c) and (d) show the fine-tuning networks used 

in this study. The details of AF extractors (place, manner, anterior, back, continuant, 

round, tense and voiced) are shown in Fig. 2 (a). We concatenate the fourth or fifth 

GRU layer output of all extractors as a vector, namely fine-tuning networks 1 (Fig. 2 

(c)) and fine-tuning networks 2 (Fig. 2 (d)) respectively, and feed it into a 5 bidirec-

tional GRU-layer neural network for the ASR task.  

3.3 Progressive Networks 

Progressive networks with lateral connections from previous tasks can accelerate learn-

ing speed and avoid forgetting [18]. They not only learn relevant features but also ac-

quire different representations from previous learned tasks, which may be irrelevant to 

the target task. The scheme of progressive networks is shown in Fig. 2 (e). In this paper, 

there are no connections between the AF extractors and they are trained in parallel and 

independently, then linearly combined. The source task is AF extraction from speech 

signals and the target task is speech recognition. We use the following formula to com-

pute outputs of layer i  in ASR tasks: 

                                                
8
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where
ih is the output of layer i of the ASR system, 

j

ik is the output of layer i  of AF 

extractor j , 1i in n
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number of units at layer i . Layer
ih receives input from both 1ih  and 1

j

ik  via equation 

(1). 

4 Experiments 

In this section, we present the dataset and the experimental setup. 

4.1 Evaluation Metric 

In this paper, we use the word error rate (WER) to evaluate model performance. WER 

quantifies how many elementary operations are required to transform the generated 

output sequence of the network into the correct target sequence. It is calculated as fol-

lows: 

                                                
S D I
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where S  is the number of substitutions, D  is the number of deletions and I  is the 

number of insertions.  N is the total number of words in the reference. 

4.2 Data 

We used the Wall Street Journal (WSJ) [22] speech corpus both for AF and ASR ex-

periments. The training set is the 81 hours ’train-si284’ with about 37K sentences. We 

used the ’dev93’ development set for validation and hyper-parameter optimization and 

report the final performance on the ’eval92’ test set.  

4.3 Training 

The baseline ASR system (shown in Fig. 2 (b)) used in this paper is similar to the Deep 

Speech 2 system [19]. The first two layers of all architectures are 2D (frequency and 

time domains) convolutions. The convolution layers not only reduce temporal variabil-

ity in the time domain but also normalize speaker variance in the frequency domain 

[23]. These are followed by GRU layers. It has been shown that GRU cells achieve 

comparable performance to Long Short-Term Memory (LSTM) but GRU cells are 

faster and easier to train [21]. Finally, we pass the output from the GRU cells to a fully-

connected layer.  

The input features for all models are spectrograms derived from the raw audio files, 

with 20ms window size and 10ms window stride. All neural networks are trained with 

the CTC, using the stochastic gradient descent optimization strategy along with a mini-

batches of 20 utterances per batch. We use 40 epochs and pick the model that performs 

best on the development set to evaluate on the test set. Learning rates are chosen from 

[1e-4, 6e-4], and a learning rate annealing algorithm is used by the value of 1.1 after 

each epoch. The momentum is 0.9. Batch normalization is used to optimize models and 

accelerate training on hidden layers. All architectures described in this paper do not use 

language models and add ‘space’ to segment outputs into words. The output alphabet 

for ASR experiments consists of 29 classes (a, b, c, …, z, space, apostrophe, blank). 

Once all AF extractors have been built, we freeze all extractor weights during ASR 

training. All models are trained on the corpus described in 4.1. 

5 Results and Discussion 

In this section, we present the performance of AF extractors and ASR systems using 

fine-tuning networks and progressive networks. Table 1 shows the error rate of different 

AF extractors trained on the 81 hours ’train-si284’ training set. All error rates are less 

than 10%, from which we conclude that articulatory features can be robustly detected 

from speech signals using the CTC loss function without requiring boundary alignment 

information.  
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Table 1. Results of articulatory feature extractors at a phoneme-level. 

 Articulatory Features Error Rate (%) 

Place 

Vowel 

Fricative 

Nasal 

Stop 

Approximant 

 

9.4 

Manner 

Coronal  

High 

Dental 

Glottal 

Labial 

Low 

Mid 

Retroflex 

Velar 

 

8.6 

Others 

Anterior 5.2 

Back 9.2 

Continuant 4.0 

Round 9.1 

Tense 8.7 

Voiced 4.0 

 

Table 2 lists the results from our ASR experiments and some results as reported in 

previous approaches using the CTC loss function on the WSJ benchmark. The fine-

tuning network 1 (using 4-layer GRU from AF extractors) achieves a 33.2% WER 

which is worse than the baseline model (32.4%). However, when concatenating 5 layers 

of output from all AF extractors, the fine-tuning network 2 performs both better than 

the fine-tuning network 1 and the baseline system. We hypothesize that the deeper fine-

tuning network 2 can capture more invariant and effective articulatory representation 

than the architecture with shallow layers. 

The progressive network performs best in all our approaches achieving 28.6% 

WER. The progressive network can avoid forgetting and provide some complementary 

articulatory representations which can be learned by end-to-end architectures. 

Table 2. Word Error Rate (WER) on the Wall Street Journal Corpus “eval92 20k” evaluation set. 

All models are trained with CTC loss function. No language models are used but the CTC-lexicon 

model [4] uses a lexicon.  

Model WER (%) 

RNN-CTC [5] 30.1 

BDRNN-CTC [24] 35.8 

CTC-lexicon [4] 26.9 

Baseline 32.4 

Fine-tuning network 1 33.2 

Fine-tuning network 2 31.6 

Progressive network 28.6 

 

To examine the approaches we proposed and make a fair comparison, we cite some 

previous approaches which use CTC and an end-to-end architecture, and only compare 
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the ASR performance without additional language models. Compared to prior ap-

proaches, the final performance of our progressive network (28.6%) is better than the 

bidirectional RNN model [19] (35.8%) and the RNN-CTC approach (30.1%). It is not 

as good as the CTC lexicon system [4] (26.9%) which uses a lexicon in decoding and 

the lexicon helps to correct the output to correctly spelled words but we do not.  

6 Conclusions and Future Work 

In this work, we have presented two approaches to combine domain knowledge AFs 

into end-to-end learning. First, fine-tuning neural networks are proposed to concatenate 

hidden layer outputs of AF extractors as inputs to another RNN for ASR. Second, a 

progressive neural network with lateral connections from AF extractors is proposed to 

integrate articulatory knowledge into an end-to-end architecture. Results show that both 

approaches can effectively incorporate articulatory information into end-to-end learn-

ing. Furthermore, the progressive neural network brings a significant improvement 

compared to the baseline system and to previous works.  

Different speech attributes play different roles during speech production. Future 

work will investigate the weighted combination approach to automatically learn the 

contributions of different speech attributes. Furthermore, we are interested to integrate 

more domain knowledge into end-to-end learning under noisy and reverberation sce-

narios. The integration of AF improves ASR performance while increasing computa-

tion and time complexity. Future work will also focus on jointly training different AF 

extractors with one network to decrease computation and time complexity. 
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Appendix 

Table 3 shows the details of eight AF extractors (Manner, Place, Anterior, Back, Con-

tinuant, Round, Tense, Voiced). Output units states the number of units in each AF 

extractor output layer. The phoneme-level transcriptions shown in the last column can 

be transformed into AF-level labels according to the flow diagram shown in Fig. 1 when 

building AF extractors.  

Table 3. The mapping of articulatory features and phonemes used in this paper [9]. 

AF extractor 

number 

Output 

units 
Category Attribute Phonemes 

1 39 Manner 

Vowel 
iy ih eh ey ae aa aw ay ah ao 

oy ow uh uw er 

Fricative jh ch s sh z zh f th v dh hh 

Nasal m n ng 

Stop b d g p t k 

Approximant w y l r 

2 41 Place 

Coronal d l n s t z 

High ch ih iy jh sh uh uw y ow g k ng 

Dental dh th 

Glottal hh 

Labial b f m p v w 

Low aa ae aw ay oy 

Mid ah eh ey ow 

Retroflex er r 

Velar g k ng 

3 14 

Other 

Anterior b d dh f l m n p s t th v z w 

4 11 Back ay aa ah ao aw ow oy uh uw g k 

5 26 Continuant 
aa ae ah ao aw ay dh eh er r ey l f 

ih iy oy ow s sh th uh uw v w y z 

6 10 Round aw ow uw ao uh v y oy r w 

7 19 Tense 
aa ae ao aw ay ey iy ow oy uw 

ch s sh f th p t k hh 

8 29 Voiced 
aa ae ah aw ay ao b d dh eh er ey 

g ih iy jh l m n ng ow oy r uh uw 

v w y z 

 


